Journal of Organometallic Chemistry, 146 (1978) C17–C18 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

VINYLIDENE COMPLEXES OF TRANSITION METALS

IV*. THE TRANSFER OF THE PHENYLVINYLIDENE LIGAND FROM MANGANESE TO RHENIUM. THE NOVEL BINUCLEAR COMPLEX $Cp_2 MnRe(\mu$ -C=CHPh)(CO)₄

N.E. KOLOBOVA, A.B. ANTONOVA, and O.M. KHITROVA*

Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Vavilov Str. 28, Moscow, B-312 (U.S.S.R.)

(Received November 23rd, 1977)

Summary

The novel complex $Cp_2 MnRe(\mu-C=CHPh)(CO)_4$ (I) containing the bridging phenylvinylidene ligand and Mn—Re bond was obtained in the reaction of $CpMn(C=CHPh)(CO)_2$ with $CpRe(CO)_2 \cdot THF$. Complex I turns into $CpRe-(C=CHPh)(CO)_2$ under normal conditions. This is the first example of the transfer of the vinylidene ligand from one transition metal to another.

Previously [1,2] we obtained the complexes of type $CpM(C=CHPh)(CO)_2$ and $Cp_2 M_2 (\mu-C=CHPh)(CO)_4$, where M = Mn or Re, with a terminal and a bridging phenylvinylidene ligand respectively.

This paper is concerned with the transfer of the phenylvinylidene ligand from manganese to rhenium through intermediate formation of the binuclear complex $Cp_2 MnRe(\mu-C=CHPh)(CO)_4$ (I):

*For part III see ref. 2.

The reaction was carried out in THF at 20°C within 4 h. Complex I was isolated by chromatography in 4% yield, and small amounts of $Cp_2 Mn_2 - (\mu-C=CHPh)(CO)_4$ and $Cp_2 Re_2 (\mu-C=CHPh)(CO)_4$ were also obtained and identified by IR spectra and TLC.

Complex I represents dark orange crystals with m.p. $161-163^{\circ}$ C, readily soluble in common organic solvents. Analysis: Found: C, 45.23; H, 2.93; Re, 31.07; Mn, 9.16. C₂₂ H₁₆ O₄ MnRe calcd.: C, 45.13; H, 2.76; Re, 31.82; Mn, 9.38%.

Complex I is only slightly stable and transforms into CpRe(C=CHPh) (CO)₂ both under normal conditions and at low temperature (-78° C). This transformation is well observed in IR spectra. The IR spectrum of solid I (KBr) contains the intensive ν (C=C) band of the bridging vinylidene ligand at 1552 cm⁻¹. This band is close to the ν (C=C) of Cp₂ Mn₂ (μ -C=CHPh)(CO)₄ at 1548 cm⁻¹ [1] and Cp₂ Re₂ (μ -C=CHPh)(CO)₄ at 1555 cm⁻¹ [2]. The IR spectrum of the solution of I in cyclohexane contains the ν (C=O) bands at 2003w, 1981w, 1952s, 1938w and 1920m cm⁻¹. The ν (C=O) bands at 1981, 1952 and 1920 cm⁻¹, attributable to the complex I, gradually disappear and after 20 h at room temperature only the two ν (C=O) bands at 2003s and 1938s cm⁻¹ of equal intensity remain. The spectrum of the obtained product of transformation is identical to that of CpRe(C=CHPh)(CO)₂ [2].

Complex I was obtained also by the independent synthesis in the reaction of $CpRe(C=CHPh)(CO)_2$ with $CpMn(CO)_2 \cdot THF$ under analogous conditions.

References

- 1 A.B. Antonova, N.E. Kolobova, P.V. Petrovsky, B.V. Lokshin and N.S. Obezyuk, J. Organometal. Chem., 137 (1977) 55.
- 2 N.E. Kolobova, A.B. Antonova, O.M. Khitrova, M.Yu. Antipin and Yu.T. Struchkov, J. Organometal. Chem., 137 (1977) 69.